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ON THE ST~ILIZATIO~ OF STE~Y-STATE ~TIO~S 
OF RECHA~ICAL SYSTEMS* 

E.M. KRASINSKAIA 

me effect is investigated of forces of specified structure on the stability of 
steady-state motions of nonholonomic (in particular, holonomic) mechanical systems. 
It is assumed /1,2/ that the forces are applied not just to the positional coordin- 
ates but also to the cyclic coordinates. In addition, the assumption is introduced 

that the controlling forces, applicable to the cyclic coordinates, depend on the 

positional velocities. Under their action in the reduced system there appear, in 
the general case, additional potential and gyroscopic forces /2/, and also dissipa- 
tive-accelerative and nonconservative positional forces (such forces arise because 
of the nonholonomicity terms /3/I. As a consequence of this there is obtained a 
possible stabilization in the first approximation of the unstable steady-state mo- 
tions in the absence of a minimum of the potential energy and for an odd degree of 
instability. Here the characteristic equation of the first approximation has zero 
roots, but the system can be reduced to a special case /3,4/ by using the methodsof 
Liapunov's theory of critical cases. 

1. Let the position of a scleronomous nonholonomic system be determined by the generaliz- 
ed coordinates ql, qtr..., qn and let the constraints imposed on the system have the form 

%' = B~f&&‘ (1.11 

Here and everywhere henceforth 

p, 0 = 1, 2,. . .,m; a, $, v, 6 = m + 1, m + 2, . . ., m + k 

x = 1,2, . . ., m - I; 5, q = m - I -I- 1, m - I + 2, . . ., m 

i, i, f =m+k+i, m+k+2 ,..., n; s, p-m-j-1, 

m + 2, . . ., n 

Summation is carried out over twice repeated indices. As the variables characterizing the 
system's state we take the Routh variables q,,, qa, qt, ql’, qo, pa, where pa = Kffaqa’, T = ‘~PPs (q)qP’qa’ 
is the system's kinetic energy expressed in terms of the independent velocities. We introduce 
into consideration the Routh function /5/ 

(U(q) is the potential energy). Then the equations of motion can be written as 

a .2) 

(1.3) 

Here To is the expression of the system's kinetic energy neglecting the nonholonomic 
constraints (1.1), Qs axe the nonpotential generalized forces referred to the independent vel- 
ocities. 

We assume that qa are coordinates cyclic in the sense of the definition in /6/. When 

*Prikl.Matem.Nekh~.,Vol.47,No.Z,pp.302-309,1983 

253 



254 

QII = 0 let there exist a manifold of steady-state motions /7/, whose dimension is not less 
than the sum of the number of cyclic coordinates and the number of nonholonomic constraints 
of general form /3/. We assume that the first m -1 constraints (1.1) are of Chaplygin 
type, i.e., for corresponding coordinates 8 (To - l”I)/aq, = 0, 8f3,,,Jaq, = 0. In addition, let 
the conditions 

be fulfilled, under which the manifold mentioned is determined by the equations for the posi- 
tional coordinates /3/. These equations, written in the Routh variables, are 

(1.4) 

2. Let us consider the possibility of stabilizing the unstable steady-state motions by 
the application of forces of a specific structure to the positional and cyclic coordinates 
/1,2/. We take an arbitrary steady-state motion 

QVl = QVm9 41 = Qio, q*’ = 0, par = c= = const (2.1) 

from the manifold. Let the forces Q. vanish on the steady-state motion (2.1), be independent 

of qa and, in Routh variables, be expressed as 

Qi = --fis (q, q’h - fu (qv q’)qj’ - pijqj + F~ (2.2) 

Qa = far (41 q’)qj’v PU = --~ji = const 

where F1 constant forces to be added on if necessary /2/ for the fulfillment of the equality 

Qio = 0 on the steady-state motion. Setting qi = qio + xi, pa = CL3 + !/a, qs = qm + SW we 
set up the equations of perturbed motion for the equation of constraints of general form, for 
the second group of equations in (1.2) and for Eqs.cl.3). Having made linear approximations 
in them, we write them as 

s' = Bx’ + @I (x, s, I’) (2.3) 

y' = iVx' + Fg’ + 0, (5, s, Y, x’) 

AX” + ry’ + (~1 + GJx’ + (M + P) x + (H + FI)Y + 
Es = U$ (x, s, y. 3’) 

Here 

The zero index signifies that the corresponding expression is computed for the steady-state 

motion (2.1). The vector-valued functions oI, @'a, 0,. contain nonlinear terms, and 

@1(x, s, 0) = @,(x, s, y, 0) =o 
(2.4) 
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Note. Xn the case of cyclic coordinates such that the conditions /8/ 

are fulfilled, the second group of equations in (1.2) take the form In t2d.S case 

N= 0 in Eqs.(2.3), while in the equations for the positional coordinates in the Conservative 
system (when Q~= 0) the dissipative-accelerative forces donotappearbecauseofthenonholono- 
micity terms, in contrasttothe more general case /3/. 

In Eqs.(2.3) we make the linear substitution /9,10/ 

%==S- Bt, w= y-F3x-Nx 

Then the equations of perturbed motion become 

i = CDS (I, z + Br, i), 1~' = @t (I, z + Bx, 

w + (Fo + NJ 2, ~'1 

Ax" + fw' + T&s' + (H + FI) w + r, -I- Ez = 
Cps (z* L + Bs, w I- (Fa + N) 59 ~7 

X1 = I'(& + Nl + Gz + Da, Z = U'f + Fd Vs + Nf + 
M+P+EB 

(2.5) 

(2.6) 

(2.7) 

The characteristic equation of the first approximation of this system is 

a*+! det (Aha -j- &h + Z} = 0 

When Q‘= () the characteristic equation turns into 

(2.8) 

Rk*l det (Aka+(f& -f-l& + rN)h. + M + EB +flNl= 0 (2.9) 

If even one of the roots of Eqs.(2.8) or (2.9) lies in the right halfplane, then the steady- 
state motion (2.1) is unstable. 

3. We present certain results on the stabilization of steady-state motions, analogous 
to the Thomson-Tate-Chetaev theorems. 

Theorem 1. If the matrix C = M + I@ +BN is symmetric, is not positive-definite, 

and if detC#O, then of steady-state motion (2-l), under the action of forces with totaldis- 
sipation with respect to positional velooities, remains unstable under the adding on of arbit- 
rary positional-velocity-dependent gyroscopic forces to the positional. coordinates. 

Proof. Under the action of the forces mentioned the characteristic equation of the re- 
duced system (2-7) is 

det {Ah* Jr fGa i &)h + C} = 0 

where matrix Dz is positive definite and Ga = -c. By the theorem's conditions all the eigen- 
values of matrix C are nonzero and among them there are negative ones. Then the theorem's 
assertion follows from the fourth Thomson-Tate-Chetaev theorem /12/. 

Statement. If the synrnetric part of matrix M-j- EB is negative definite, then for 
N = 0 and for an odd number of positional coordinates the steady-state motion cannot be 
stabilized by any generalized gyroscopic, dissipative-accelerative and nonconservative posi- 
tional forces Qi of form (2.2) applied to the positional coordinates. 

The validity of this statement follows from Merkin's Theorem 9 /11/. 
We now observe that the forces Qa of form (2.2) , applicable to the cyclic coordinates, 

and the nonho~onomicity terms in the equations for the cyclic momenta are of like nature.Under 
their action, in general, in the reduced system (2.7) arise additional potential, nonconserva- 
tive positional, gyroscopic and dissipative-accelerative forces, since the matrices I'(F,+ N), 
H (Fs+N) decompose into symmetric and skew-symmetric ones. 

Under the action of forces Q+ = -Fly+ depending on the cyclic momenta and applicable to 
the positional coordinates, for the reduced system there may arise as well additional potent- 
ial and nonconservative forces of the form FIN% or F1F2x under the simultaneous action of 
these generalized forces and of the forces Q; = Fax'. Moreover, the forces Qi, depending 
on the cyclic momenta, do not yield dissipative-accelerative and gyroscopic forces for system 
(2.7). Such forces will not arise also under the action of forces QaoFsz' if r=o (or 
Rx = 0). Thus, by applying a force to Me cyclic coordinates we can in some cases stabilize un- 
stable steady-state motions under the hypotheses of Theorem 1 and of the Statement, since 
under the action of these forces the potential energy of the reduced system car-, &age. For 
stabilization we should choose the coefficients of forces Q, in such a way that the roots of 
the reduced system's characteristic equation lie to the left of the imaginary axis, because 



case the next theorem (proved in /3/ with Qo. =O) is valid for steady-state motions 
defined by manifold (1.4). 

Theorem 2, If all roots of characteristic Eq.(2.8), except li + 1 zero ones, have nega- 
tive real parts, then the singular case of k f 1 zero roots obtains and the steady-state tno- 

tion is asymptotically stable relative to the velocities qi' and is stable relative to the 
coordinates Qi, q,, and to the momenta pa. 

In Routh variables the proof of this theorem is simpler than the one in /3/. We write 
the Eqs.(2.7) of perturbed motion as 

t' = 5,. 11' = --A-' (l-u' - ‘,X1 + (H - F,) w + 
Zz + Ez) j aa (r, 3. IO, I’) 

(3.1) 

Since d&Z +o under the theorem's conditions, a soiution I~ (z, K) exists of the equation 

A-'xu @. X) + A-1 (H + F,) LL' + A-'EL - (Da* (U, Z, II', 0) = '1 

where cDr* is the part of the nonlinear terms oD1, containing the freely occurring critical 

variables Z, ~2. In Eqs.(2.5) and (3.1) we make the change of variables "? = I, (Z. U', - ; ,'4,12,'. 
Because the nonlinear terms Q~ and 0? satisfy condition (2.4), these equations turn into a 
system where all the nonlinear terms vanish when ;= zl= 0, i.e., the singular case obtains /3, 
4,12/. In such a case the steady-state motion (2.1) will be asymptotically stable relative 
to the variables :,I, and stable relative to I, IL', and, in the original variables, will be 
asymptotically stable relative to the positional velocities and stable relative to the coord- 
inates qi, q1 and the momenta pa. 

Note. If Eqs.(2.7) do not contain freely occurring critical variables z,~, then the 
steady-state motion will be asymptotically stable relative to the positional velocities and 
coordinates and stable relative to q,,, pa. 

Example. Consider a disk on a rough horizontal plane /7/. The disk's position is 
determined by the coordinates 2 and Y of the disk's contact with the plane and by the Euler 
angles e,%9. The Lagrange function L,, set up without taking constraints into account, and 
the equations of the nonholonomic constraints have the form 

Lo = V,m (z'* + y’*) + ma [y’ (8’ eos 0 cos$ - $ sin 8 sin*) - (3.2) 
$ (13' cos e sin $ -+ qp’ sin 8 00~ q)] + I/, (A + m/a*) O’* _t V2 (A co.+3 + 

ma* sin* O) 9-p + l/,C (cp’ - qp’ sin e)* - mga cos e 

S’ = acp’ cosrp, y’ = a$ sin cp (3.3) 

here m is the disk's mass, a is the radius, A is the equatorial moment of inertia, C is the 

polar moment of inertia. The system being examined is a Chaplygin system; here the expres- 

sion for L, set up with due regard to constraints (3.3), is independent of coordinates cp,$ 

L = I/* [(A + maa) f3’* + (c $ maz) (cp' -- $' sin e)* i- AIp” cos* 81 -mga COS CI 

We introduce the variables p1 = aL/acp’, p2 = aLtarp* i then the Routh function is 

R = I/* [(A + mnz) 8.2 - p12 (C + ma?)-1 - pz2 (A COS* e)-1 - 
2p1pp sin 0 (A COS* e)-l - p12tga 8 (A)+] - mga GOS 8 

The manifold of steady-state motions is determined by the equation aRdat3 = 0, since the non- 

holonomicity terms in the equation for coordinates 8 vanish /7/ and the ewation itself ad- 
mits of the solution 

e = eo, p1 = c1 = cod, p1 = c2 = const 

Let the scattering function have the form F = V,AB*z /7/. Setting e = e, + 11, pi = cl + yl, pz = C* + 

y,, we write the equations of perturbed motion 

yz’ = - q’ma” ~0s 6 + wa + ~d(& + tg* ‘“;;’ ‘) )+ 
sinh+q) 

e2+s, Acosf(f),+rl) 1 

(A + m?) rl” + h’ + +- (YICI + ~4 $$& + 
(CtY2 + CiYd 

I + sin2 e. 
A cos3 e. - mgaq cos eO + + (a” + 

(3.4) 
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Let us study the stability of the disk's twisting about the vertical diameter e= 0, PZ=C~= 
0, p, = C$ = const, CI = QA, 82 = qa* relative to the variables e,pitp,. 

Havingsetupthe firstapproximationequations andmade achangeofvariables of form (2.5),we 
obtain the characteristic equation 

(A -+- maa) X2 + LX + (--mga + ASP + ma*@) = 0 

where the terms m&P arise because of the nonholonomicity terms in the first of Eqs.(3.4). 
The stability condition 

(3.5) 

coincides with the condition obtained in /7/. If noti along the coordinate rp we add on the 

force i?m = je., then after a change of form (2.5) an additional potential force j&) appears 
in the reduced equation for 0 and the stability condition becomes 

--n&w-!- PE (A -I- ma*)+ aj>O (3.6) 

Consequently, having chosen j>i?, when a> 0 and j<O when a<0 so as to fuffil condition 
(3.6), the unstable twisting can be stabilized when condition (3.5) is violated. We note that 
R,=O, for the disk and, therefore, in the reduced system there do not appear additional dis- 
sipative-accelerative forces both because of the nonholonomicity terms in the first two of 
Eqs.(3.4) and under the action of forces CV 

4. Obviously, analogous results will be valid for the steady-state motions of holonomic 
systems if the equations of perturbed motion are set up with due regard to perturbations of 
the cyclic momenta /2,5/. Here, for the application of the methods of the theory of critical 
cases, in the equations for the positional coordinates it is necessary to write out in detail 
greater than in /5/ all the terms containing the critical uariables, namely, the perturbations 
of the cyclic momenta 

Under the action of forces Qa of form (2.2), after the change w = y- Fex, we obtain the 
reduced system's characteristic equation 

c,= _ azicC) II ( > Ii , 65 -I- D1 = II (t&z + f,do II 
r 0 

When Q ==O a theorem analogous to Theorem 2 leads to the result established in /5/. 
The possibility of stabilizing the steady-state motions of holonomic systems by forces applied 
to the cyclic coordinates has been proved by the method of Liapunov functions /2/, and addit- 
ional potential and gyroscopic forces have been isolated in the reduced system. 
case, under the action of forces Qa 

In thegeneral 
of form (Z-Z), besides the forces mentioned there can al- 

so arise, as we see from Eq.(4.1) , additional dissipative-accelerative and nonconservative 
positional forces. 

Example. We consider a heavy solid body with one fixed point in the Kovalevskaia case, 
i.e., the principal moments of inertia are connected by the relation A =B= 2C, while the 
center of gravity is located on the principal inertia axis Z. 
tion is /2/ 

In this case the Lagrange func- 

I = I/* [2C (+' sin* e + e-2) + c (q' + Vr' cos @?I - Pz, sin 0 sin CF 

where P is the body's weight, t, is the coordinate of the center of gravity. When 
have the integral p = Xi&$. = con&. 

&.=O we 

Let us consider the steady-state motion for which 

P = Cl, cF = d, 8 = e. (4.2) 

where @, is found from the equation 
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For this motion the coefficients of the reduced potential energy Iv= --~,(q, C) are 

cw = - Pze sin I&, 
Cl2 

ce = - c 
C0S260 (1 -3sin~8,) 

(sin*e, + 1)s 

Let us consider the case c,>O; motion (4.2) is stable for the values sin" 9, >113, and un- 
stable for sin* 6,) < 1/3. To the cyclic coordinate JI we apply the force 

Qp = 18’ (4.3) 

Then for the reduced system, in the equation for @ an additional potential force appears and 
the coefficient ~a becomes 

By choosing the magnitude and sign of coefficient f we can 
Here the choice of the sign of f depends upon the sign of 
for the reduced system an additional force 

C, 
Ce* = ‘0 - 7 

2 sin eO ~08 e,, 
(sin2 eO + 1)’ f 

make ca* positive when sin2 0, < 1'3. 
Cl. Under the action of force (4.31, 

~0.7 8. 
sins e, + , fee = 48 

appears in the equation for 'P. In order to obtain the singular case we add on further the 
dissipative force Qa- -d,W:&>O. Then the characteristic equation determining the nonzero 
roots of the reduced system is written as 

g = c1 sin eO (2 + COS* O,)(sin* eO + I)-2 

With the chosen magnitude and sign of f all the coefficients 
can be verified that -gd, > 0). The Hurwitz criterion leads 
too is fulfilled. 

of the equation are postive (it 
to the condition g2-&>O, which 

Thus, the motion unstable for sinz&,<l/3 can be stabilized by applying force (4.3), where- 
in f is selected from the condition ~a*> 0, and the dissipative force Qe = -d,W of arbitrary 
magnitude. If the dissipative force Qe= -d,cp’,d,>O acts here, i.e., we have total dissipa- 
tion with respect to the positional velocities, the stabilization achieved is not destroyed 
(the possibility of such a stabilization was noted in /Z/J. 

The rotation of the Kovalevskaia top around the verical (with e = 'p= s/2), in the un- 
stable case when z,,>O /13/, has been stablized in /2/ by another method. In this case the 
matrix H in (4.1) vanishes; therefore, additional potential forces HF,s do not appear in 
the reduced system, but forces F,F,r can be obtained. Thus, if the forces Qei,f~vQQ,= -f!~ 
act on the body, then we obtain an additional potential force in the equation for rp. Then, 
under the action of forces with total dissipation along the positional velocities we can 
stabilize the rotation, unstable for zO>O, aroung the vertical with the condition f'>Pq, 
where the angular velocity o=lp' must satisfy the condition oa7P.%lC. obtained in /13/. 

REFERENCES 

1. 

2. 

3. 

4. 
5. 

6. 

RUMIANTSEV V.V., On control and stabilization of systems with cyclic coordinates. PMM Vol. 
36, No.6, 1972. 

RUMIANTSEV V.V., Ontheinfluence of gyroscopic forces on the stability of steady-state mo- 
tion. PMM Vo1.39, N0.6, 1975. 

KARAPETIAN A.V., On the problem of steady-motion stability of nonholonomic systems. PMM, 
Vo1.44, No.3, 1980. 

LIAPUNOV A.M., Collected Works, Vo1.2, Moscow-Leningrad, Izd. Akad. Nauk SSSR, 1956. 
RUMIANTSEV V.V., On the Stability of the Steady-State Motions of an Artificial Satellite. 

MOSCOW, Vychislit. Tsentr Akad. Nauk SSSR, 1967. 
EMEL'IANOVA I.S. and FUFAEV N.A., On the stability of steady-state motions. In: Theory of 

Oscillations, Applied Mathematics and Cybernetics. Gor'kii, Izd. Gor'k. Univ. 1974. 



259 

7. NEIMARK Iu.1. and FUFAEV N-A., Dynamics of Nonholonomic Systems. Moscow, NAUKA, 1967. 
8..SHUL'GIN M.F., On Certain Differential Equations of Analytical Dynamics and Their Integra- 

tion. Tashkent, Izd. Sredneaziatsk. Gos. Univ., 1958. 
9. AISERMAN M.A. and GANTMACHER F-R., Stabilitst der Gebichgewichtslage in einem nichtholono- 

men System. 2. angew. Math. und Mech., B:37, H. l/2, 1957. 
10. KRASINSKAIA-TIUMHNEVA E.M. and KRASINSKII A.Ia., On the influence of the structure of 

forces on the equilibrium stability of nonhomonomic systems. In: Questions of Computa- 
tional and Applied Mathematics. No.45, Tashkent, Akad. Nauk UzSSR, 1977. 

11. MERKIN D.R., Introduction to the Theory of Stability of Motion. Moscow, NAUXA, 1976. 
12. KAMENKOV G.V., Selected works, Vo1.2, Moscow, NAUKA, 1972. 
13. RUMIANTSEV V-V., On the stability of rotation of a heavy rigid body with onepointfixed 

in the case of S.V. Kovalevskaia. PMM, Vo1.18, No.4, 1954. 

Translated by N.H.C. 


